Maximal Bell's inequality violation for non-maximal entanglement

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Bell’s Inequality Violation for Non Maximal Entanglement

Bell’s inequality violation (BIQV) for correlations of polarization is studied for a product state of two two-mode squeezed vacuum (TMSV) states. The violation allowed is shown to attain its maximal limit for all values of the squeezing parameter, ζ. We show via an explicit example that a state whose entanglement is not maximal allow maximal BIQV. The Wigner function of the state is non negativ...

متن کامل

Maximal Neutrino Mixing and Maximal CP Violation

We propose a phenomenological model of lepton mixing and CP violation based on the flavor democracy of charge leptons and the mass degeneracy of neutrinos. A nearly bi-maximal flavor mixing pattern, which is favored by current data on atmospheric and solar neutrino oscillations, emerges naturally from this model after explicit symmetry breaking. The rephasing-invariant strength of CP or T viola...

متن کامل

Maximal violation of Bell’s inequality and atomic cascade photons

A correlation inequality is derived from local realism and a supplementary assumption. This inequality is violated by a factor of 1.5 in the case of real experiments, whereas previous inequalities such as Clauser-Horne-Shimony-Holt inequality of 1969 and Clauser-Horne inequality of 1974 are violated by a factor of √ 2. Thus the magnitude of violation of this inequality is approximately 20.7% la...

متن کامل

Maximal inequality and Large Deviations 6.1 Kolmogorov’s maximal inequality

Proof. To see L2-convergence, we will prove that (Sn)n>1 is Cauchy in L 2. It is enough to show that ||Sn − Sm||2 < ε for all n,m > N(ε). Suppose n > m, then we obtain ||Sn − Sm||2 = E(Sn − Sm) = E(Xm+1 +Xm+2 + · · ·+Xn) = Var(Xm+1 +Xm+2 + · · ·+Xn) = Var(Xm+1) + Var(Xm+2) + · · ·+ Var(Xn). For any ε > 0, there exists N = N(ε) with ∑∞ i=N Var(Xi) < ε 2, thus we have ||Sn−Sm||2 < ε for all n,m >...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 2004

ISSN: 0375-9601

DOI: 10.1016/j.physleta.2004.02.005